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Abstract

The goal of continual learning is to sequentially learn new tasks without revisiting
or forgetting old ones. Specifically, neural networks tend to exhibit catastrophic
forgetting when sequentially training on different tasks.

In theory, one approach to enable continual learning is Bayesian inference. In
practice however, due to the complexity of neural networks, approximate Bayesian
inference has to be used to make the computation feasible.

In this work, we propose to use a principled natural gradient variational infer-
ence method, called Variational Online Gauss-Newton (VOGN) [Khan et al., 2018],
for continual learning. We provide the necessary background in continual learning,
approximate Bayesian inference, and optimisation to understand VOGN. Moreover,
building on these foundations, we derive natural gradient variational inference in gen-
eral, and VOGN specifically.

The focus of this work is on the regularisation based approach to continual learning
and on the supervised image classification setting with deep neural networks. We
demonstrate empirically that VOGN can be applied to continual learning benchmarks,
such as permuted and split MNIST, and split CIFAR10/100. The method consistently
matches or outperforms comparable methods.

Additionally, we briefly introduce some potential further improvements to VOGN,
such as using a structured covariance approximation.

VOGN is implemented as a plug-and-play optimiser which makes it easy to use; it
also naturally scales to larger models and datasets, as demonstrated in Osawa et al.
[2019]. We hope this work facilitates further research on natural gradient variational
inference for continual learning, and see this as a promising demonstration of the
merits of deep learning with Bayesian principles.
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1 INTRODUCTION

1 Introduction

Humans are able to learn new tasks throughout their whole lifetime without forgetting
previously learned tasks. This is a crucial feature of human intelligence since it
allows humans to deal with a variety of tasks. Moreover, learning certain tasks makes
acquiring some new ones easier or it might increase performance of previously learned
tasks. All of this is possible despite the fact that humans have only a limited capacity
of memory and computation (the brain) at their disposal.

In contrast, machines have difficulties dealing with inputs in an online fashion;
revisiting old data is expensive and sometimes even impossible. Also, even though
memory tends to be cheap, not storing data also has other advantages, such as stronger
privacy and security guarantees in the case of personal or classified data. In this work,
we focus on the setting of continual learning for image classification tasks with neural
networks. This setting is commonly used to develop new continual learning approaches
and has received increased attention in recent years (cf. 1.1). Mostly, because neural
networks tend to exhibit so-called catastrophic forgetting when learning multiple tasks
sequentially [McCloskey and Cohen, 1989].

Bayesian inference (2.1) offers a natural way of enabling continual learning (2.1.2).
In practice, exact Bayesian inference for neural networks is not tractable but approx-
imate methods are available (2.1.1). Here, we build on a principled natural gradient
variational inference algorithm, called Variational Online Gauss Newton (VOGN),
which has originally been proposed in Khan et al. [2018]. Moreover, it has been
shown to scale well to deep neural networks and offers a lot of promise for out-of-the-
box continual learning [Osawa et al., 2019] (one result published in this paper is also
part of this work, the rest of the here presented results are unpublished).

We introduce the necessary background to understand the algorithm in section 2,
such as variational inference (2.1.3), basic optimisation for deep learning (2.2), and
natural gradient descent (2.3). Note, that this is not meant to be a complete or formal
review of these topics since all of them are huge active research fields. Rather, the
reader should get some basic understanding and intuition about the ideas relevant to
VOGN.

In section 3, we derive natural gradient variational inference in general (3.1), and
VOGN specifically 3.2. We show how to use VOGN for continual learning (3.3) and
how to scale it to larger datasets and model architectures (3.4). Moreover, we briefly
introduce two possible structured covariance approximation which can be used with
VOGN, SLANG (3.5.1) and K-FAC (3.5.2).

The empirical results and their discussion are presented in section 4. Here, we
introduce evaluation metrics (4.1) and datasets (4.2), and present results for three
continual learning benchmarks: Permuted (4.3) and split (4.4) MNIST, and split
CIFAR10/100 (4.5).

Finally, we briefly summarise the motivation, method, and results in section 5.
Additionally, we present potential improvements to VOGN and promising directions
for further research in continual learning.

1.1 Related Work on Continual Learning

There are various approaches to facilitate continual learning in neural networks; gen-
erally one can differentiate between inference, model, and memory based approaches.

Inference based methods focus on adjusting the training algorithm to either reg-
ularise weights [Kirkpatrick et al., 2017, Zenke et al., 2017, Nguyen et al., 2018,
Ebrahimi et al., 2019] or outputs [Benjamin et al., 2018, Titsias et al., 2019] to stay
close to the ones from the previous tasks.

Model based methods try to enable continual learning by changing the neural
network architecture, e.g. adding new layers or units during or in between tasks [Rusu
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1.1 Related Work on Continual Learning 1 INTRODUCTION

et al., 2016]. Alternatively, different subnetworks can be learned through pruning
[Golkar et al., 2019]; this method still sees a performance decrease after the model
capacity is reached and there is no potential for backward transfer. Moreover, learning
a hard attention mask for all task has been proposed in Serrà et al. [2018]; the method
is called HAT.

In the category of memory based approaches one can either try to select and store
a small subset of each task’s data [Chaudhry et al., 2019, Aljundi et al., 2019] or learn
a generative model to rehearse ’artificial’, generated data [Shin et al., 2017, Farquhar
and Gal, 2019].

Obviously, there are no hard boundaries between these general approaches and
all of them can be combined in some ways, e.g. by adjusting the training algorithm,
using a multi-head network, and storing a so-called coreset, as done in Nguyen et al.
[2018]. Arguably, a true solution to the continual learning problem might need to
incorporate elements of all the different approaches.

In this work, our focus is on methods that modify the training algorithms so that
they can help to learn continually; specifically, we focus on methods which regularise
in weight space. However, depending on the application, it might make sense to
trade-off some memory for increased performance by selecting a small (compared to
the dataset size) coreset of each task’s data; however, we do not consider this in this
work.

2



2 BACKGROUND

2 Background

2.1 Bayesian Inference

Bayesian inference builds upon Bayes’ rule which states that the conditional proba-
bility of an event A given that B is true, also called the posterior probability, is given
by

P (A|B) =
P (A,B)

P (B)
=
P (B|A)P (A)

P (B)
. (1)

Bayes’ rule directly follows from the definition of the conditional probability and the
product rule.

Bayesian inference frames inference of unknown quantities as calculating the pos-
terior, given by Bayes’ rule for probability density functions:

p(y|x) =
p(x,y)

p(x)
=
p(x|y)p(y)

p(x)
(2)

Here, y = y1:N are unobserved or latent variables and x = x1:N are observations.
In this work, we want to use Bayesian inference to determine the conditional

probability distribution p(θ|D) over the parameters or weights θ of a neural network,
given the observed data D, and a prior distribution p(θ). We focus on supervised

classification tasks where the data is given as a set D =
{
xi, yi

}N
i=1

, with N identically
and independently distributed samples, where xi is the input, here often the raw pixel
values of an image, and yi the target class. The goal is to predict the correct label yi
to the corresponding input xi, i.e. use the neural network as a discriminative model.

Let X be a matrix with xi as the i-th row and y a vector with yi as the i-th
entry. Since we are interested in the probability distribution over the parameters of
the neural network θ, we want to compute

p(θ|D) =
p(θ,y,X)

p(y,X)
=
p(y|θ,X)p(θ|X)

p(y|X)
=
p(y|θ,X)p(θ)

p(y|X)

∝ p(y|θ,X)p(θ),

(3)

where p(θ|X) = p(θ) because the prior p(θ) is independent of the data. The prior
makes it possible to incorporate domain and expert knowledge into the problem.
However, in practice the prior is often treated like a hyperparameter (or at least the
parameters of the chosen prior distribution).

To predict the label y∗ for an unseen data point x∗, we can use the predictive
distribution,

p(y∗|x∗,D) =

∫
Θ

p(y∗,θ|x∗,D)dθ =

∫
Θ

p(y∗|θ,x∗,D)p(θ|x∗,D)dθ

=

∫
Θ

p(y∗|θ,x∗)p(θ|D)dθ,

(4)

which is calculated by using the posterior distribution p(θ|D) to integrate over the
domain Θ of θ. From now on, we omit the subscript of the integral over parameter
values. In contrast to Bayesian inference, one could also use a point estimate of θ. The
advantage of Bayesian inference is, that our prediction accounts for the uncertainty
in our estimate of θ. In practice, we can use a Monte Carlo approximation (explained
in equation 47) to this integral.

The quantity p(y|X) in equation 3, commonly called model evidence or marginal
likelihood, is constant and can be computed by marginalising out all possible param-
eter values θ:

3



2.1 Bayesian Inference 2 BACKGROUND

p(y|X) =

∫
p(y,θ|X)dθ =

∫
p(y|θ,X)p(θ)dθ (5)

Since neural networks can have a huge number of parameters, often in the millions,
this integral is not tractable for most commonly used models. Therefore, approximate
Bayesian inference is necessary in practice. There are many possible ways of approach-
ing this with neural networks, which is briefly summarised in section 2.1.1. In this
work, we focus on an approach called variational inference (see section 2.1.3) which
can be used for all kind of models even though we only apply it to neural networks.

2.1.1 Bayesian Neural Networks

This section deals with the question of how we can do approximate Bayesian inference
with neural networks.

The most naive approach is ignoring the normalising constant p(y|X) since the
remaining term is still proportional to the the true posterior (see equation (3)) and
therefore has the same mode, which corresponds to computing the maximum a pos-
teriori (MAP) estimate. Note, that this is similar to using the maximum likelihood
(ML) estimate but with a prior distribution p(θ) which corresponds to what is called
a regulariser in the common deep learning terminology. If we choose a L2 regulariser,
this would be equivalent to a Gaussian prior distribution.

Alternatively, one could use the MAP as the mean and the Hessian at the MAP
as the covariance matrix for a Gaussian distribution which has been called Laplace
approximation [Mackay, 1991].

Further, more sophisticated approaches to doing approximate Bayesian inference
with neural networks exist. There are sampling based approaches like Markov Chain
Monte Carlo (MCMC) which have also been used for neural networks but struggle
with scalability issues. Moreover, it has been argued that using dropout during test
time corresponds to sampling from the posterior distribution [Gal and Ghahramani,
2016].

Also, there is the possibility to perform variational inference with neural networks
by using commonly used deep learning optimisation methods like Adam to optimise
the evidence lower bound with regards to the mean and covariance of a mean-field
Gaussian variational distribution (see section 2.1.3). This has been proposed by Blun-
dell et al. [2015] and is called Bayes-by-Backprop (BBB).

2.1.2 The Bayesian Approach to Continual Learning

Bayesian inference offers a natural solution to the continual learning problem: Since
the posterior incorporates all information of the prior distribution, the prior could
encode the distribution learned while training on previous tasks. The posterior dis-
tribution should capture all information of the previous tasks through this prior and
of the current task through the likelihood.

Let k be the index of the current task. Then the posterior after training on task
k is given by
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p(θ|D1:k) =
p(y1:k|θ,X1:k)p(θ)

p(y1:k|X1:k)

=
p(θ)

∏k
i=1 p(yi|θ,Xi)∏k
i=1 p(yi|Xi)

=
p(yk|θ,Xk)p(y1:k−1|θ,X1:k−1)p(θ)

p(yk|Xk)p(y1:k−1|X1:k−1)

=
p(yk|θ,Xk)p(θ|D1:k−1)

p(yk|Xk)
.

(6)

Note, that we assume that the likelihood p(y1:k|θ,X1:k) and the marginal likelihood
p(y1:k|X1:k) can be factorised, i.e. they are (conditionally) independent.

In this final form it becomes obvious that p(θ|D1:k), i.e. the posterior obtained
after training on task k, can be expressed recursively; p(θ|D1:k−1), the posterior
obtained after training on task k − 1, becomes the prior for training on task k.

Therefore, in theory, Bayesian inference could prevent catastrophic forgetting but
in practice, approximate Bayesian methods have to be used to make the computation
feasible which leads to some forgetting.

Still, approximate Bayesian methods for neural networks are able to use the recur-
sive updates of the posterior as described above; the prior acts as a regulariser which
helps to avoid changes in parameters important for performance on previous tasks.
For example, the Elastic Weight Consolidation (EWC) method [Kirkpatrick et al.,
2017] uses past experiences as a prior distribution with a type of Laplace approxi-
mation. Ritter et al. [2018] extend this approach to use a Kronecker factored online
Laplace approximation. Another method called variational continual learning (VCL)
[Nguyen et al., 2018] uses variational inference instead of the Laplace approximation,
implemented with BBB. This was extended to use the variance to adapt the learn-
ing rate appropriately in a method called uncertainty-guided continual learning with
Bayesian neural networks (UCB) [Ebrahimi et al., 2019]. There has also been some re-
cent effort of using Gaussian processes [Rasmussen and Williams, 2006] for functional
regularisation of neural networks to enable continual learning [Titsias et al., 2019].
While this is out of the scope of this work, using functional regularisation offers some
potential benefits over regularisation of the weights since it can exploit well-known
weight-space symmetries in neural networks [Benjamin et al., 2018, Bishop, 2006].

2.1.3 Variational Inference

We choose variational inference (VI) [Jordan et al., 1999, Wainwright and Jordan,
2008] as a method of doing approximate Bayesian inference. For a more detailed
review of VI, see Blei et al. [2016].

The key idea of variational inference is to formulate Bayesian inference as an
optimisation problem. We restrict the posterior distribution to some family of distri-
butions, for example Gaussians, and then maximise the similarity between our chosen
variational distribution q(θ) and the true posterior distribution p(θ|D). As a mea-
sure of proximity between two continuous probability distributions p(x) and q(x) we
choose the Kullback-Leibler (KL) divergence, defined as

DKL(p(x) ‖ q(x)) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx = Ep(x)[log p(x)]− Ep(x)[log q(x)]. (7)

It is not symmetric (and thereby not a metric) and is greater or equal than zero. It is
zero if and only if p(x) = q(x). From now on, if there is no ambiguity, we suppress the
boundaries of integrals and the subscript of expectations for the sake of simplicity.
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Equipped with this dissimilarity measure, we can formulate the following optimi-
sation problem where we constrain the approximate posterior, the variational distri-
bution q(θ), to be part of the variational family F :

q∗(θ) = arg min
q(θ)∈F

DKL(q(θ) ‖ p(θ|D))

= arg min
q(θ)∈F

E[log q(θ)]− E[log p(θ|D)]

= arg min
q(θ)∈F

E[log q(θ)]− E[log p(θ,D)] + log p(D)

(8)

From the expansion done in equation (8), it is obvious that we cannot directly
optimise this objective since it depends on the logarithm of the marginal probability
p(D). Luckily, since it is simply an added constant, we can reformulate an equivalent
objective which is independent of p(D). This new function is called evidence lower
bound (ELBO) and is the negative version of the previously stated KL divergence
with the model evidence added.

L(q) = E[log p(θ,D)]− E[log q(θ)]

= E[log p(D|θ)] + E[log p(θ)]− E[log q(θ)]

= E[log p(D|θ)] + DKL(p(θ) ‖ q(θ))

= E[log p(D|θ)]− DKL(q(θ) ‖ p(θ))

(9)

Rewritten in this way, maximising the ELBO has an intuitive interpretation: The
first term is the expectation of the log likelihood which is maximised while the sec-
ond term is the KL divergence between the variational distribution and the prior
distribution p(θ) which is minimised. Loosely speaking, optimising this bound corre-
sponds to optimising the fit of the model to the data while encouraging the variational
distribution to stay close to the prior.

Using the posterior derived for the supervised continual learning setting in equa-
tion 6, the ELBO for task k becomes

LCL(qk) = E[log p(yk|θ,Xk)]− DKL(qk(θ) ‖ p(θ|D1:k−1))

≈ E[log p(yk|θ,Xk)]− DKL(qk(θ) ‖ qk−1(θ)),
(10)

with q0(θ) = p(θ).
The next obvious question is what family of distributions F we want to constrain

q(θ) to be part of. Note, that if we would consider all possible families of distributions,
variational inference would result in the exact posterior distribution. Since more
complex families are harder to optimise, we need to decide on a a trade off between
ease of computation and sufficient complexity for our purposes.

For this work, we only consider Gaussian distributions, especially because they
offer many convenient properties and closed form expressions. In particular, we focus
on so-called mean-field Gaussian distributions, which take the following form:

q(θ) =

D∏
i=1

qi(θi) (11)

This leads to a multivariate Gaussian distribution N (θ|µ,Σ) with mean vector µ and
diagonal covariance matrix Σ = diag(σ2), where diag(·) is an operator that constructs
a square diagonal matrix with the argument, a vector, on its diagonal. Later, we also
briefly introduce two structured approximations to the covariance matrix in section
3.5 but the main focus remains on the diagonal approximation.

6



2.2 Optimisation for Deep Learning 2 BACKGROUND

Using the mean-field Gaussian variational family for neural networks means that
there now is a univariate Gaussian distribution over every parameter of the neural
network. Therefore, the number of factorised Gaussians is equal to the number of
parameters of the neural network D; the mean µ is of dimension D. Also, it is easy
to see how a non-diagonal covariance matrix would be huge since it is of size D ×D.
In the diagonal case, it is sufficient to store and work with the vector σ2 of size D.
This means that we have to store 2D parameters for our neural network instead of
just D.

2.2 Optimisation for Deep Learning

The next question when applying variational inference for neural networks is how the
ELBO should be optimised. In this section we provide some context on commonly
used optimisation methods in deep learning, in particular stochastic gradient descent
(SGD) and the popular method Adam [Kingma and Ba, 2015].

Let’s consider a common scenario in a deep learning multi-class classification task
where the objective ` is continuously differentiable, e.g.the cross entropy with the
logarithm of the softmax function applied to the outputs of the neural network; we

assume that the dataset D =
{
xi, yi

}N
i=1

is split into mini-batches of M examples
(xi, yi) each. The loss function ` is averaged over all examples in a mini batch.

`(θ) =
1

M

M∑
i=1

`i(θ) (12)

Now we want to minimise this loss function with help of the gradient of `(θ) with
respect to θ. Therefore, we want to take steps in the opposite direction of the gradient
in the parameter space, to iteratively update our estimate of θ.

θt+1 = θt − α∇θ`(θ) (13)

Here, t indicates the iteration and α is a constant step size, also called learning
rate. The gradient ∇θ`(θ) is a column vector, as all other vectors in this work.

When the mini-batch size M is equal to the dataset size N , this is full batch
gradient descent. If M = 1, it is called stochastic gradient descent (SGD). For both,
stochastic and full batch gradient descent, convergence guarantees exist, which state
that they converge to the global optimum for strongly convex loss functions.

The most common case is a compromise between stochastic and full batch gradient
descent, where 1 < M < N . This offers a balance between the properties of the two
extremes: When using the whole dataset for each iteration, the optimisation process is
deterministic; this means that common nonlinear optimisation like conjugate gradient
and Newton methods can be used. Also, full batch gradient descent can be easily
distributed, in contrast to SGD, where the weights are updated much more frequently.
However, full batch gradient descent might not be as efficient as SGD, since there
might be (approximate) redundancy in the data. This can lead to faster convergence
of SGD compared to full batch gradient descent, at least initially. Moreover, large
datasets might not even fit in memory. Mini-batch gradient descent can also make use
of optimised matrix operations implemented in common deep learning frameworks.
See Bottou et al. [2016] for more details on the properties of gradient descent methods.

Main challenges for these simple gradient descent methods are highly non-convex
optimisation which is the usual case in deep learning, and how to choose an appro-
priate learning rate.

In addition to these simple gradient descent methods, many more sophisticated
adjustments have been proposed and tested empirically to address these challenges.
There are simpler ones like adding a momentum term to the gradient and more
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complex ones. Here we focus on Adam [Kingma and Ba, 2015], as it is surprisingly
similar to the main method used in this work. The main idea is based on adapting
the learning rate through using estimates of the first and second moment, m and v
respectively, of the gradients g as exponential moving averages (initialised with zero),
which are using the decay factors β1 and β2. This effectively changes the learning
rate for each individual parameter, which allows steps proportional to the importance
of each parameter.

gt+1 = ∇θ`(θt)
mt+1 = β1mt + (1− β1)gt+1

vt+1 = β2vt + (1− β2)g2
t+1

(14)

Since these estimates of the moments are biased, they are corrected:

m̂t+1 =
mt+1

(1− βt+1
1 )

v̂t+1 =
vt+1

(1− β2)t+1

(15)

And finally, the parameters θ are updated. A small constant ε > 0 is added for
numerical stability.

θt+1 = θt − α
m̂t+1√
v̂t+1 + ε

(16)

Adam has been empirically shown to work well in many scenarios and is widely
used in the deep learning community. One of the advantages for the practical use is
that learning rate α and the other hyper-parameters β1 and β2 usually do not have
to be tuned a lot to get reasonable results.

2.3 Natural Gradient Descent

Now we want to explore an alternative to classical gradient descent methods which
is a central part of our main method. Note, that when applying gradient descent
methods to minimise an objective function, we want to take steps in the direction of
steepest descent. To motivate the notion of natural gradients [Amari, 1998], we first
define what steepest descent actually means.

Definition 2.1. (Steepest descent) The direction of steepest descent is the vector δθ
that minimises `(θ + δθ) under the constraint that δθ has a fixed length ε‖a‖, with ε
being a small constant and a a vector with ‖a‖2 = 1. The norm ‖ · ‖ is not specified
for now.

The crucial point about this definition is that it only makes sense to compare
the decrease of the function ` that we want to minimise when moving into different
directions a if we move the same distance in each direction, i.e. ε‖a‖.

Remember that we did not decide on a particular norm yet. First, we consider
the Euclidean norm with which the constraint becomes ‖a‖22 =

∑
a2
i = aTa = 1.

Moreover, we observe that using the first order Taylor expansion, we can write `(θ +
δθ) ≈ `(θ)+ ε∇θ`(θ)Ta, where ε→ 0, as long as ` is continuously differentiable. Now
we can approach this constrained minimisation problem by applying the Lagrangian
method, with λ being the Lagrangian multiplier:

∂

∂ai
∇θ`(θ)Ta− λaTa = 0 (17)

When solving for a, we get

8
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a =
1

2λ
∇θ`(θ). (18)

As you can see, choosing the Euclidean norm results in the regular gradient of `
multiplied by a constant 1

2λ being the direction of steepest descent. If we collapse the
constant in our learning rate α we get classical gradient descent, as shown in equation
(13).

Remember, that when we are optimising the ELBO, we ultimately want to opti-
mise in the space of probability distributions of the family F . The problem is that
the Euclidean distance between parameter vectors θ and θ+ δθ, which we are implic-
itly chosen when applying classical gradient descent, is generally a bad dissimilarity
measure between the two corresponding probability distributions.

This can be easily illustrated by an example from Hoffman et al. [2013]: While
the parameters of the two barely overlapping Gaussians N (0, 0.01) and N (0.1, 0.01)
have an Euclidean distance of only 0.1, the parameters of the two almost identical
Gaussians N (0, 10000) and N (10, 10000) have an Euclidean distance of 10.

We already know a better dissimilarity measure for probability distributions,
namely the KL divergence in equation (7). To define a metric with help of the
KL divergence, let us first specify the loss `(θ) = − log h(θ) with the likelihood
h(θ) := p(y|θ,X). Now we approximate the KL divergence between h(θ) and h(θ′)
with θ′ = θ + δθ by the second order Taylor polynomial around the current estimate
θ:

DKL(h(θ) ‖h(θ′)) ≈DKL(h(θ) ‖h(θ′)) +∇θ′DKL(h(θ) ‖h(θ′))T (θ′ − θ)

+
1

2
(θ′ − θ)T∇2

θ′DKL(h(θ) ‖h(θ′))(θ′ − θ)
(19)

with
DKL(h(θ) ‖h(θ′))|θ′=θ = 0. (20)

Additionally, we can rewrite ∇θ′DKL(h(θ) ‖h(θ′)) as

∇θ′DKL(h(θ) ‖h(θ′)) = ∇θ′
[
Eh(θ)[log h(θ)]− Eh(θ)[log h(θ′)]

]
= −

∫
h(θ)∇θ′ log h(θ′)dθ

= −
∫
h(θ)

1

h(θ′)
∇θ′h(θ′)dθ

(21)

and if we evaluate at θ′ = θ, we get

∇θ′DKL(h(θ) ‖h(θ′))|θ′=θ = −
∫
h(θ)

1

h(θ)
∇θh(θ)dθ

= −∇θ
∫
h(θ)dθ

= −∇θ1
= 0.

(22)

The quadratic term can be written as

∇2
θ′DKL(h(θ) ‖h(θ′)) = −∇2

θ′

∫
h(θ) log h(θ′)dθ

= −
∫
h(θ)∇2

θ′h(θ′)dθ

= −Eh(θ)[∇2
θ′ log h(θ′)]

(23)

9



2.3 Natural Gradient Descent 2 BACKGROUND

and evaluated at θ′ = θ, it results in

∇2
θ′DKL(h(θ) ‖h(θ′))|θ′=θ = −Eh(θ)[∇2

θ log h(θ)]. (24)

With all these results, we can write

DKL(h(θ) ‖h(θ′)) ≈ −1

2
(θ′ − θ)TEh(θ)[∇2

θ log h(θ)](θ′ − θ). (25)

It is important to note, that, as mentioned before, we evaluate at θ′ = θ since we
are interested in infinitesimal small differences in parameter values. Therefore, the KL
divergence is locally approximately symmetric which we already learned is generally
not the case. This is relevant because as a consequence, the second derivative of the
KL divergence is the same when both distributions match and can thereby be used
to define a metric.

We now define a metric which we can apply to our derivation of the direction of
steepest descent.

Definition 2.2. (Fisher information) Let the Fisher information F(θ) be defined by
the curvature of the KL divergence, so

F(θ) : = ∇2
θ′DKL(h(θ) ‖h(θ′))|θ′=θ

= −Eh(θ)[∇2
θ log h(θ)].

(26)

An alternative form of the the Fisher information can be derived through the
following algebraic manipulations:

F(θ) = −Eh(θ)[∇2
θ log h(θ)]

= −Eh(θ)[∇θ(
1

h(θ)
∇θh(θ))]

= −Eh(θ)[−
1

h(θ)
∇θh(θ)

1

h(θ)
∇θh(θ)T +

1

h(θ)
∇2
θh(θ)]

= Eh(θ)[∇θ log h(θ)∇θ log h(θ)T ]− Eh(θ)[
1

h(θ)
∇2
θh(θ)]

= Eh(θ)[∇θ log h(θ)∇θ log h(θ)T ].

(27)

The last step uses Eh(θ)[
1

h(θ)
∇2
θh(θ)] = 0 which can be derived analogously to

equation (22).
Finally, we can go back to our original objective, that is, finding the direction of

steepest descent under the assumption of a norm ‖ · ‖. Before, we have considered
the Euclidean norm. Now, let us consider a non-orthonormal coordinate system, the
Riemannian space, where the squared norm with the so-called Riemannian metric
tensor, which can be written as a symmetric, positive definite matrix G, is given by
the quadratic form

‖a‖2 =
∑
i,j

gi,jaiaj = aTGa. (28)

Since we have already defined a suitable metric, the Fisher information F, we can
choose G = F and plug the corresponding norm into the Lagrangian formulation of
our constrained optimisation problem in equation (17):

∂

∂ai
∇θ`(θ)Ta− λaTFa = 0 (29)

If we now solve for a, we get

10



2.3 Natural Gradient Descent 2 BACKGROUND

a =
1

2λ
F−1∇θ`(θ). (30)

We absorb the constant 1
2λ in the learning rate α and get

θt+1 = θt − αF−1∇θ`(θ), (31)

called natural gradient descent. Note, that the natural gradient ∇̃ = F−1∇ is equal
to the regular gradient ∇ for an orthonormal Euclidean coordinate system since G
would be the identity matrix.

To recap, we have seen that regular gradient descent implicitly uses the Euclidean
distance to find the direction of steepest descent. When we optimise in the space
of probability distributions this is not an appropriate distance measure, so we use a
different metric, the Fisher information, defined by the curvature of the KL diver-
gence which is locally a more appropriate dissimilarity measure between probability
distributions. This results in natural gradient descent, where the natural gradient is
the inverse Fisher information matrix multiplied by the classical gradient. Thereby,
the algorithm utilises the local geometry of the loss landscape to find the direction
of steepest descent. The motivation is that this might lead to faster convergence and
that it might be easier to overcome local minima in the loss landscape than with
classical gradient descent methods; this is supported by some evidence, e.g. Amari
[1998].

11



3 METHODS

3 Methods

In this section, we use the results presented in section 2 to derive natural gradient
variational inference, and in particular VOGN. Moreover, we show how to use VOGN
for continual learning, how to scale it to deep neural networks and bigger datasets,
and potential ways to improve it by considering structured approximations to the
covariance matrix.

3.1 Natural Gradient Variational Inference

At this point, we can put all the previously discussed methods together: Exact
Bayesian inference with neural networks is generally intractable, therefore we want
to perform approximate Bayesian inference. We choose to apply variational inference
and want to optimise the ELBO through gradient descent. Since classical gradient
descent implicitly assumes an Euclidean parameter space even though probability
distributions lay on a Riemannian manifold, we use natural gradient descent which
respects the information geometry of this manifold.

This results in natural gradient variational inference (NGVI). While there have
been earlier results on applying natural gradient descent to variational inference, we
follow Khan and Lin [2017] and in particular the extension to practical deep learning
algorithms in Khan et al. [2018].

First, we will introduce the general algorithm proposed in Khan and Lin [2017]
which assumes the variational distribution q(θ) to be part of the exponential family
and can be applied to many models beyond neural networks.

The exponential family is a set of many widely used models such as the set of
exponential, Beta, Gamma, Bernoulli, and Poisson distributions. It is formulated
as a general parametric form for all those distributions and has convenient algebraic
properties. A member of an exponential family takes the following form:

q(z|λ) = h(z) exp (〈λ,φ(z)〉 −A(λ)) (32)

where z is a random variable, h(z) is a positive function called base measure, φ is
a vector of sufficient statistics, λ is a vector of natural parameters, 〈·, ·〉 is an inner
product, and A(·) is the log-partition function which is automatically determined once
the other functions are set since it is normalising the distribution.

The detailed properties go beyond the scope of this work (see Wainwright and
Jordan [2008] Chapter 3 for more details); the important point is that we can param-
eterise any member of the exponential family with natural parameters. A property
called minimality means that there is a unique mapping of the natural parameter
λ to the expectation or mean parameter m. The expectation parameters are the
expectation of the sufficient statistics of the distribution.

Now we can state a result from Raskutti and Mukherjee [2015]: If we assume
minimality, the natural gradient with regards to λ is equal to the regular gradient
with regards to m:

∇̃λL(λ) = F−1∇λL(λ) = ∇mL∗(m) (33)

where L(λ) is the ELBO from equation 9 with variational distribution qλ(θ) and
L∗(m) is a formulation of the same objective in terms of m (its existence is guaranteed
by the minimality assumption).

With this equality, we can now formulate the natural gradient update in the
natural parameter space by taking the gradient with regards to m.

λt+1 = λt + βt∇mL∗(mt) (34)

where βt is the step size and t the iteration.

12
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In the next step we derive the update equations for the case where the variational
distribution qλ(θ) is a Gaussian distribution N (θ|µ,Σ) with mean vector µ and
covariance matrix Σ.

The expectation parameters m of a Gaussian are simply the first and second order
moments of a Gaussian random variable. With this, the definitions of the natural and
expectation parameters of a Gaussian distribution are as follows:

λ(1) = Σ−1µ

λ(2) = −1

2
Σ−1

m(1) = Eq(θ)
[
θ
]

= µ

M(2) = Eq(θ)
[
θθT

]
= µµT + Σ

(35)

Since we want to optimize the mean µ and covariance Σ of qλ(θ), we want to

express the gradient with respect to m(1) and M(2) in terms of the gradients with
respect to µ and Σ. First we write µ and Σ in terms of m(1) and M(2):

µ = m(1)

Σ = M(2) − µµT
(36)

Now we can rewrite the gradients using the chain rule:

∇m(1)L∗ = ∇µL − 2
[
∇ΣL

]
µ

∇M(2)L∗ = ∇ΣL
(37)

To derive the final update equations we can simply plug in these gradients and
the definition of the natural parameters λ(1) and λ(2) in equation 34. We will first
derive the update for Σ−1 since Σ−1

t+1 is necessary to update µt.

−1

2
Σ−1
t+1 = −1

2
Σ−1
t + βt∇ΣLt

⇐⇒ Σ−1
t+1 = Σ−1

t − 2βt∇ΣLt
(38)

Now we derive the update for µ in the same way.

Σ−1
t+1µt+1 = Σ−1

t µt + βt(∇µLt − 2
[
∇ΣLt

]
µt)

⇐⇒ µt+1 = Σt+1

[
Σ−1
t µt + βt(∇µLt − 2

[
∇ΣLt

]
µt)
]

= Σt+1

[
Σ−1
t µt + βt∇µLt − 2βt

[
∇ΣLt

]
µt
]

= Σt+1

[
(Σ−1

t − 2βt
[
∇ΣLt

]
)µt + βt∇µLt

]
= Σt+1

[
Σ−1
t+1µt + βt∇µLt

]
= µt + βtΣt+1∇µLt

(39)

These are the natural gradient updates for the mean µ and precision matrix Σ−1

of a Gaussian.
At this point we could simply choose a mean-field approximation and use com-

monly used stochastic gradient methods described in section 2.2 to compute the gra-
dients ∇µL and ∇ΣL. In contrast, the crucial point about the approach described in
Khan et al. [2018] is that we only want to use the gradients of

13
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f(θ) :=
1

N

N∑
i=1

fi(θ) = − 1

N

N∑
i=1

log p(yi|θ,xi), (40)

where N is the number of data points; this is the maximum likelihood objective
commonly used in deep learning. To achieve this, we rewrite the ELBO in 9 as a
function of µ and Σ as

L(µ,Σ) := Eq(θ)
[
−Nf(θ) + log p(θ)− log q(θ)

]
, (41)

where the prior p(θ) is also a Gaussian distribution N (θ|µp,Σp).
Now there is a way to replace the gradients ∇µL and ∇ΣL with an expression

which only depends on the gradient ∇θf(θ) and the Hessian ∇2
θf(θ) with the help of

Bonnet’s and Price’s theorems [Opper and Archambeau, 2009, Rezende et al., 2014]:

∇µEq(θ)
[
f(θ)

]
= Eq(θ)

[
∇θf(θ)

]
∇ΣEq(θ)

[
f(θ)

]
=

1

2
Eq(θ)

[
∇2
θf(θ)

] (42)

Using this equality, we can write

∇µL = ∇µEq(θ)
[
−Nf(θ) + log p(θ)− log q(θ)

]
= Eq(θ)

[
−N∇θf(θ)

]
+ Eq(θ)

[
∇θ log p(θ)

]
− Eq(θ)

[
∇θ log q(θ)

]
= Eq(θ)

[
−N∇θf(θ)

]
+ Eq(θ)

[
∇θ log p(θ)

]
= Eq(θ)

[
−N∇θf(θ)

]
+ Eq(θ)

[
∇θ −

1

2
(θ − µp)

TΣ−1
p (θ − µp)

]
= Eq(θ)

[
−N∇θf(θ)

]
− Eq(θ)

[
Σ−1
p (θ − µp)

]
= Eq(θ)

[
−N∇θf(θ)

]
−Σ−1

p (Eq(θ)
[
θ
]
− µp)

= −
[
NEq(θ)

[
∇θf(θ)

]
+ Σ−1

p (µ− µp)
]

(43)

and

∇ΣL = ∇ΣEq(θ)
[
−Nf(θ) + log p(θ)− log q(θ)

]
=

1

2
Eq(θ)

[
−N∇2

θf(θ)
]

+
1

2
Eq(θ)

[
∇2
θ log p(θ)

]
− 1

2
Eq(θ)

[
∇2
θ log q(θ)

]
=

1

2
Eq(θ)

[
−N∇2

θf(θ)
]
− 1

2
Eq(θ)

[
∇θΣ−1

p (θ − µp)
]

+
1

2
Eq(θ)

[
∇θΣ−1(θ − µ)

]
=

1

2
Eq(θ)

[
−N∇2

θf(θ)
]
− 1

2
Σ−1
p +

1

2
Σ−1.

(44)

By plugging in these gradients in the NGVI updates from equations 38 and 39 we get

Σ−1
t+1 = Σ−1

t − 2βt∇ΣLt
= Σ−1

t − βt
[
Eq(θ)

[
−N∇2

θf(θ)
]
−Σ−1

p + Σ−1
t

]
= (1− βt)Σ−1

t + βt
[
NEq(θ)

[
∇2
θf(θ)

]
+ Σ−1

p

] (45)

and

µt+1 = µt + βtΣt+1∇µLt
= µt − βtΣt+1

[
NEq(θ)

[
∇θf(θ)

]
+ Σ−1

p (µt − µp)
]
.

(46)

We still have to approximate the expectations of the gradient and the Hessian
of f(θ) with Monte Carlo samples, which means using the law of large numbers to
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3.2 Variational Online Gauss-Newton (VOGN) 3 METHODS

approximate an expectation of a function Eq(θ)
[
f(θ)

]
of a random variable θ by the

mean of the function evaluated at samples θi from the distribution q(θ):

Eq(θ)
[
f(θ)

]
≈ 1

K

K∑
i=1

f(θi) (47)

For the sake of simplicity we only use one sample θt ∼ N (θ|µt,Σt) at this point,
even though we will use more in practice.

With this approximation of the expectations, the final updates are

Σ−1
t+1 = (1− βt)Σ−1

t + βt
[
N∇2

θf(θt) + Σ−1
p

]
µt+1 = µt − βtΣt+1

[
N∇θf(θt) + Σ−1

p (µt − µp)
]
.

(48)

By replacing the gradient and Hessian with their stochastic mini batch approxi-
mations ĝ(θt) := N

M

∑M
i=1∇θfi(θt) and Ĥ(θt) := N

M

∑M
i=1∇2

θfi(θt), we get

Σ−1
t+1 = (1− βt)Σ−1

t + βt
[
Ĥ(θt) + Σ−1

p

]
µt+1 = µt − βtΣt+1

[
ĝ(θt) + Σ−1

p (µt − µp)
]
.

(49)

To summarise, we now have updates that can perform NGVI with the gradient
and Hessian of the ML objective instead of the gradients of the ELBO.

Computing the stochastic gradient ĝ(θt) is common practice in deep learning.

Even the stochastic approximation of the Hessian Ĥ(θt) could be computed by
automatic-differentiation software but the problem is that it has to be a positive
definite matrix to qualify as a covariance matrix of a non-degenerate Gaussian, i.e. a
valid probability density function. The same holds for computing the Hessian with
the reparameterisation trick [Kingma and Welling, 2013]. To enforce the constraint
on the Hessian, a simple backtracking method could be used, see Appendix D.1. in
Khan et al. [2018] for details.

3.2 Variational Online Gauss-Newton (VOGN)

Here, we choose a different approach to deal with this issue. Instead of the Hessian,
we write

Ĥ(θt) ≈
N

M

M∑
i=1

∇θfi(θt)∇θfi(θt)T =: F̂(θt) (50)

which is an approximation of the Fisher information matrix introduced in equation
27, called the empirical Fisher information. This method is also known as Generalized
Gauss-Newton [Schraudolph, 2002, Martens, 2014]. Even though the empirical Fisher
is widely used because it is easy to compute as the sum of the outer products of the
individual gradients, its theoretical justification is limited. This suggests that there
are still gaps in the understanding of methods using the empirical Fisher which are
successful in practice. For an excellent discussion on these limitations of the empirical
Fisher, see Kunstner et al. [2019].

Finally, using this approximation for the Hessian, the update for Σ−1 becomes

Σ−1
t+1 = (1− βt)Σ−1

t + βt
[
F̂(θt) + Σ−1

p

]
. (51)

The shape of F̂ is D ×D since it is the outer product of the individual gradients
∇θfi(θt) with the shape D×1. Storing this matrix takes O(D2) memory and inverting
it takes O(D3) computations. In a neural network D is the number of parameters
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Figure 1: Adam and VOGN on a 2d toy example. The red line indicates the deci-
sion boundary based on predictions made with the mean of the posterior distribution
obtained by VOGN; the light red lines are predictions made with samples of the poste-
rior. VOGN finds a similar optimum as Adam (blue line) but additionally provides an
uncertainty estimate. Code available at https://github.com/team-approx-bayes/
dl-with-bayes/tree/master/toy_example.

which can be in the millions. Therefore, it is unfeasible to use the full empirical Fisher
F̂ for common deep learning models.

As described in section 2.1.3, we constrain the variational distribution q(θ) and the
prior p(θ) to have a diagonal precision matrix Σ−1 = diag(σ−2) and prior precision
Σ−1
p = diag(σ−2

p ) respectively. This is equivalent to having a univariate Gaussian
distribution over each parameter θi. By choosing this approximation, we only have
to store and invert the vector σ2. In section 3.5 we are also briefly introducing
structured approximations which might lead to better convergence properties and
potentially better continual learning performance.

The version of the NGVI updates with the empirical Fisher as an approximation
to the Hessian and a diagonal covariance matrix for q(θ) and p(θ) is called Variational
Online Gauss-Newton (VOGN):

σ−2
t+1 = (1− βt)σ−2

t + βt
[
diag(F̂(θt)) + σ−2

p

]
µt+1 = µt − αtσ2

t+1

[
ĝ(θt) + σ−2

p (µt − µp)
] (52)

where diag(F̂(θt)) = N
M

∑M
i=1(∇θfi(θt))2, with (·)2 being an element-wise operation.

Since we have made several approximations, the updates are not exact NGVI. For this
reason, having two distinct learning rates, αt and βt which can be tuned separately
might be beneficial in practice.

A scalable implementation which was used in Osawa et al. [2019] and can be
used as a plug-and-play optimiser in PyTorch is available at https://github.com/

cybertronai/pytorch-sso.
At this point, it is worth pointing out how similar the updates of VOGN and

Adam are. Since we use a slightly different notation for each method, it might not be
completely obvious at first. The main differences are that VOGN uses a sample θt
(in practice multiple samples) from the current variational distribution to compute
the stochastic mini-batch gradients ĝ(θt) and since Adam is a deterministic method,
it will only use the gradient at the current values of the parameters. See Figure 1 for
an illustration of the different behaviour of VOGN and Adam. The sampling makes
VOGN slightly slower than deterministic methods like Adam or SGD.

Also due to being a Bayesian method, VOGN uses a prior distribution; as a
consequence, the prior precision σ−2

p is added in the update of the precision and
σ−2
p (µt − µp) is added to the gradient in the update of the mean.

Moreover, Adam uses the squared mini-batch gradient ĝ2 for the computation of
the exponential moving average v while VOGN uses diag(F̂(θt)) which is the scaled
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3.3 VOGN for Continual Learning 3 METHODS

sum of squares of the individual gradients, i.e. this would only be equivalent for M =
1. Since common deep learning frameworks like PyTorch do not provide access to the
individual gradients, this is the main source of additional computational complexity
of VOGN compared to Adam. Note, that this is simply due to the implementation of
currently available tools and not due to theoretical reasons. For a detailed description
of how the individual gradients for linear, convolutional, and batch norm layers can be
obtained, see Appendix B in Osawa et al. [2019] (based on Goodfellow [2015], which
only works for linear layers).

Additionally, Adam uses the square root of the inverse of v when preconditioning
the gradient. Lastly, VOGN does not naturally have an exponential moving average
over the gradient and a bias correction which are used in Adam. A variant of VOGN
which resembles Adam as closely as possible while still being an approximate Bayesian
method has also been introduced together with VOGN and is called Vadam [Khan
et al., 2018].

This close connection of these two methods is quite surprising considering the fact
that Adam has been developed by largely empirical efforts while VOGN has been
derived in a principled manner.

3.3 VOGN for Continual Learning

Now we want to apply VOGN to continual learning, as described in section 2.1.2.
This has already been proposed in Tseran et al. [2018] but without any experimental
results. Since the only thing that changes is the choice of the prior distribution, the
updates remain almost unchanged. To adjust the notation, we introduce an index
denoting the task k:

σ−2
k,t+1 = (1− β)σ−2

k,t + β
[
diag(F̂(θk,t)) + σ−2

k−1,tmax

]
µk,t+1 = µk,t − ασ2

k,t

[
ĝ(θk,t) + σ−2

k−1,tmax
(µk,t − µk−1,tmax

)
] (53)

The prior mean µk−1,tmax
and the prior precision σ−2

k−1,tmax
for training on task k are

the posterior mean and precision of training on all tasks up to k − 1; tmax denotes
the last iteration of training on a task.

The prior mean µ0 and the prior precision σ−2
0 are the parameters of the prior

distribution specified before training on the first task. Usually, µ0 = 0 and σ−2
0 = c1

with c ∈ R>0 and 0,1 are D-dimensional vectors, with every element equal to zero
and one respectively.

These updates are optimising the ELBO for continual learning LCL in equation
10.

3.4 VOGN for Practical Deep Learning

One thing that is important to point out is that VOGN can be simply used as a
replacement for an optimiser like Adam, i.e. in principle by changing one line of code.
This means that VOGN can be used with any kind of neural network architecture,
while other Bayesian deep learning methods like BBB require a custom architecture.

Thereby, the main advantage of VOGN compared to other Bayesian Deep Learn-
ing methods such as MC-dropout or Bayes-by-Backprop is that it is theoretically
principled, preserves the advantages of Bayesian inference to some extend while be-
ing practically usable with deep neural networks on large datasets. This has been
shown in Osawa et al. [2019] which contains results for VOGN with ResNet-18 on
ImageNet with comparable performance to SGD and Adam. At the same time out-
of-distribution uncertainties are improved, predictive probabilities are well-calibrated,
and continual learning is enabled. Here, we briefly discuss which techniques can be
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applied to make VOGN scale to practically relevant deep learning problems, as demon-
strated in Osawa et al. [2019].

To make VOGN useful in practice, common deep learning techniques can be used,
i.e. momentum, initialisation best practices, and data augmentation [Sutskever et al.,
2013], learning rate scheduling [Goyal et al., 2017], batch normalisation [Ioffe and
Szegedy, 2015], and distributed training. Regarding data augmentation, there is
a subtle difference when using VOGN. Since in the updates shown in equation 53
diag(F̂(θt)) and ĝ(θk) are explicitly scaled by the dataset size N , we need to introduce
a new scalar hyperparameter ρ to adjust the dataset size to account for the effectively
increased number of training samples. It is not clear how to exactly determine ρ but
in practice it does not seem to matter as long as the order of magnitude is correct.
For more details on using VOGN with deep neural networks and big datasets, see
Osawa et al. [2019].

Note, that this scalability and ease of use of VOGN is very desirable for a con-
tinual learning method. VOGN can now be applied to all kinds of continual learning
problems. How well it performs and how much hyperparameter tuning is necessary
is still an open question but we see promising results in section 4.

3.5 Structured Covariance Approximations

One potential direction of further research on improving VOGN in general and VOGN
for continual learning in particular, are structured, i.e. non-diagonal, approximations
to the covariance matrix Σ. First, we will introduce a ’low-rank plus diagonal’ ap-
proximation called SLANG which was proposed in Mishkin et al. [2018] and also
show how it can be applied to the prior distribution which is necessary for continual
learning. Then we will briefly look a variant of Kronecker-Factored Approximate Cur-
vature (K-FAC) [Martens and Grosse, 2015] which was proposed for natural gradient
variational inference in Zhang et al. [2018]; however, here we will not derive the form
of the updates with a Kronecker-factored prior covariance.

3.5.1 SLANG

Here, we simply consider the updates for mean µ and covariance matrix Σ of the
variational distribution q(θ) = N (θ|µ,Σ) used in the VOGN (see section 3.2), but
allow for some kind of non-diagonal structure in Σ. The method, developed in Mishkin
et al. [2018], is called stochastic, low-rank, approximate, natural gradient (SLANG).
It approximates the inverse of the covariance matrix by a diagonal plus low-rank
structure:

Σ−1
t ≈ Σ̂

−1

t := UtU
>
t + Dt (54)

In the following, we will present the update step of U and D in SLANG and show
how to extend it to a Gaussian prior with the same low-rank plus diagonal structured

precision matrix as Σ̂
−1

instead of an isotropic Gaussian prior with scalar precision
parameter λ.

Σ̂
−1

t+1 := Ut+1U
>
t+1 + Dt+1 ≈ (1− βt)Σ̂

−1

t + βt
[
F̂(θt) + λI

]
(55)

This update cannot be performed exactly without potentially increasing the low-rank
of Ut+1 (see Mishkin et al. [2018] for details). Therefore, we approximate Ut+1 with
eigenvalue decomposition of rank L:

(1− βt)Σ̂
−1

t + βt
[
F̂(θt) + λI

]
= (1− βt)UtU

>
t + βtF̂(θt) + (1− βt)Dt + βtλI

≈ Q1:LΛ1:LQ>1:L + (1− βt)Dt + βtλI,
(56)
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where Λ1:L is a diagonal matrix with the L largest eigenvalues of (1 − βt)UtU
>
t +

βtF̂(θt) on the diagonal and the columns of Q1:L are the L corresponding eigenvectors.
Now we introduce a Gaussian prior p(θ) ∼ N (θ|µp,Σp) with a precision matrix

with low-rank plus diagonal structure:

Σ−1
p := UpU

>
p + Dp (57)

Since there now is an additional low-rank component in the prior precision, the
update has to be adjusted. Even though we know the prior precision factor Up which
is constant over the duration of the task, we cannot explicitly add it to obtain Ut+1

which would add an additional approximation. This is essentially the same problem
as with online SLANG in Mishkin et al. [2018]. Therefore, we still approximate the
whole term with eigenvalue decomposition (differences to SLANG without vector prior
mean and low-rank plus diagonal prior precision are marked in red):

Σ̂
−1

t+1 ≈ (1− βt)Σ̂
−1

t + βt
[
F̂(θt) + Σ−1

p

]
= (1− βt)UtU

>
t + βt

[
F̂(θt) + UpU

>
p

]
+ (1− βt)Dt + βtDp

≈ Q1:LΛ1:LQ>1:L + (1− βt)Dt + βtDp

(58)

Subsequently, Ut+1 can be updated as

Ut+1 = Q1:LΛ
1/2
1:L (59)

Similarly, we have to slightly change the update of the diagonal component Dt of
the precision. In the case of the diagonal, it is possible to exactly match the diagonal
of both side of the equation for each iteration:

diag
[
Ut+1U

>
t+1+Dt+1

]
= diag

[
(1−βt)UtU

>
t +βt

[
F̂(θt)+UpU

>
p

]
+(1−βt)Dt+βtDp

]
(60)

This results in the update

Dt+1 = (1− βt)Dt + βtDp + ∆t (61)

with a ”diagonal correction”

∆t = diag
[
(1− βt)UtU

>
t + βt

[
F̂(θt) + UpU

>
p

]
−Ut+1U

>
t+1

]
. (62)

Moreover, the update of the mean µ also has to be slightly modified since the
prior mean µp is not zero anymore and the scalar precision λ is now replaced by Σ−1

p :

µt+1 = µt − αtΣt+1

[
ĝ(θt) + Σ−1

p (µt − µp)
]

(63)

With these adjustments, it is possible to use SLANG for continual learning, in the
same way we use VOGN in equation 53.

3.5.2 K-FAC

Another possible approximation for the covariance matrix is the Kronecker-Factored
Approximate Curvature (K-FAC) [Martens and Grosse, 2015]. As mentioned before,
it has been used for continual learning with an online Laplace approximation [Ritter
et al., 2018]. The results are promising, especially one experiment, where the authors
ran their algorithm on 50 tasks of permuted MNIST while still achieving comparably
high average accuracy. On the other hand, no code is available and the paper lacks
some crucial details on how the method was implemented.
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Besides this application in continual learning, K-FAC has been also applied to
NGVI [Zhang et al., 2018], resulting in an algorithm basically identical to VOGN
but with a matrix variate posterior [Louizos and Welling, 2016, Sun et al., 2017]
with a Kronecker-factored covariance matrix. This variant of VOGN, called noisy K-
FAC, is also scalable and achieves comparable performance to VOGN on ImageNet; it
converges faster measured in iterations but since it’s slower in terms of computation
per iteration, the wall clock time is about the same as VOGN [Osawa et al., 2019].

There has been no work published on noisy K-FAC and continual learning. While
the update of the mean is easy to adjust, using a Kronecker-factored prior precision
might require some more thought. In Ritter et al. [2018], they do not describe their
approach in detail but provide some evidence that K-FAC has the potential to improve
Bayesian approaches to continual learning which use a simple diagonal covariance
approximation. Therefore, it might be a good direction for further research to try to
apply noisy K-FAC to continual learning problems.
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4 RESULTS AND DISCUSSION

(a) MNIST (b) CIFAR10

Figure 2: Random samples of all 10 classes of MNIST (2a) and CIFAR10 (2b) (one
class per row).

4 Results and Discussion

As mentioned before, we restrict the domain of problems to supervised image clas-
sification tasks, which is common for many continual learning approaches. First,
we show that the performance of VOGN is competitive to comparable state-of-the-
art approaches on two common continual learning benchmarks, permuted [Srivastava
et al., 2013, Goodfellow et al., 2013] and split MNIST [Zenke et al., 2017, Nguyen
et al., 2018]. Second, we consider a larger continual learning benchmark, called split
CIFAR10/100 [Zenke et al., 2017], discuss the issues we encounter, and how we can
overcome them.

As far as baselines are concerned, we only compare against methods which have
been used on the same benchmarks with the same model architecture and which are
also not necessarily using memory or extending the model architecture. We compare
against EWC [Kirkpatrick et al., 2017], SI [Zenke et al., 2017], and VCL [Nguyen
et al., 2018] on all benchmarks. On permuted MNIST we also show results for UCB
[Ebrahimi et al., 2019] and HAT [Serrà et al., 2018] because the results are obtained
with the same model architecture we use (even though HAT does not belong to the
class of regularisation based methods). On CIFAR10/100 we also compare against
two more simple baselines due to the more challenging nature of the benchmark. For
more approaches to continual learning, see section 1.1.

All three benchmarks assume that the task boundaries are known, the tasks are
not overlapping, and that on each task multiple passes through the data are possible.
The hope is that this work can demonstrate the potential of VOGN for continual
learning and offer some insights in how adjustments can be made to scale to bigger
and harder problems.

All benchmark datasets are split in training and validation set; we present results
for the validation set.

4.1 Evaluation Metrics

We use the standard continual learning metric of average accuracy after training on
all tasks, backward transfer, as suggested in Lopez-Paz et al. [2017], and forward
transfer, which we define differently than Lopez-Paz et al. [2017].

As mentioned in the introduction, continual learning is not only about avoiding
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Figure 3: Average accuracy on all tasks up to current task on permuted MNIST. We
show the mean as markers and standard deviation as error bands of 20 runs with
different random permutations and random seeds for training. VOGN does at least
as well as VCL and much better than EWC. Figure adopted from Osawa et al. [2019].

catastrophic forgetting but also about improving performance on previously seen and
future data. To formalise these properties, we define backward and forward transfer.

Intuitively, backward transfer measures the average improvement on previous
tasks. Note, that it is not clear how to differentiate between backward transfer and
a lack of forgetting; maybe it is even impossible to distinguish between the two. As
long as there is more forgetting than true backward transfer on average, the backward
transfer metric is negative. Forward transfer should measure the average difference
the accuracies achieved by a model independently trained from scratch and a model
which before was trained on previous tasks, with the previous posterior as prior.

Now we formalise these intuitive descriptions. We train sequentially on K tasks
without revisiting old tasks after moving to the next one. After training on task k, we
test the accuracy on the validation datasets of all tasks up to k. Let A ∈ RK×K , with
ai,j being the validation accuracy on task j after training on task i. This means that
A can be seen as a lower triangular matrix, since we only care about values for i ≥ j.
s is the vector of test accuracies for every task with the model trained independently
from scratch with Adam. Given A and s, we define the following metrics:

Average Accuracy ACC =
1

K

K∑
i=1

aK,i (64)

Backward Transfer BWT =
1

K − 1

K−1∑
i=1

aK,i − ai,i (65)

Forward Transfer FWT =
1

K − 1

K∑
i=2

ai,i − si (66)

4.2 Datasets

Here, we introduce the datasets which are modified to be used as continual learning
benchmarks.

The underlying dataset of permuted and split MNIST is the Modified National
Institute of Standards and Technology (MNIST) dataset which contains 60000 train-
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Table 1: The average validation accuracy over all tasks of Permuted-MNIST (10 tasks)
and Split-MNIST. We report mean and standard deviation over 5 runs for improved
VCL and SLANG, 20 runs for VOGN, and use results from Nguyen et al. [2018] for
EWC and SI. Results for UCB and HAT are taken from Ebrahimi et al. [2019]. -
denotes that no results are known. The best results (within standard deviation) are
shown in bold.

Method Permuted MNIST Split MNIST
EWC 84% 63.1%
SI 86% 98.9%
UCB 91.4% -
HAT 91.6% -
Improved VCL 93.0%± 1.0 98.4%± 0.4
VOGN 94.0%± 0.8 98.8%± 0.1
SLANG (L=64) 93.8%± 1.4 -

ing and 10000 test images 1. Each image is in grey-scale and 28 × 28 pixels big and
displays a handwritten digit belonging to one of the 10 classes 0 to 9. See Figure 2a
for some exemplary images.

The split CIFAR dataset consists of images from CIFAR10 and CIFAR100. The
CIFAR10 dataset was created by the Canadian Institute For Advanced Research and
contains 60000 32×32×3 colour images belonging to ten classes (airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck). The training set contains 50000
images and the test set 10000. See Figure 2b for some exemplary images.

The CIFAR100 dataset, developed by the same institution, also consists of 60000
32× 32× 3 images, with the same split in train and test set. The main difference is
that it has 100 classes, grouped in 20 so-called superclasses. Examples of superclasses
are insects, fish, flowers, and people. Examples of corresponding classes are bee, shark,
orchids, and baby 2.

4.3 Permuted MNIST

Permuted MNIST is widely used as a benchmark for new continual learning methods.
Each task consists of the whole MNIST dataset with a fixed random permutation
of the pixel values. We consider 10 tasks, which means the benchmark consists of
10 subsequent 10-class classification problems. To get comparable results, we follow
Kirkpatrick et al. [2017], Zenke et al. [2017], Nguyen et al. [2018] and use a single
head, fully-connected two-layer neural network with ReLU activation functions and
100 units per layer. We set the VOGN hyperparameters α = β = 0.001, and train
for 100 epochs per task with a mini batch size of 256. During training, we use 10
MC samples and 100 for validation. We choose a standard normal prior. The mean
of the variational distribution is initialised with the initial weights which are sampled
according to the default PyTorch initialisation for linear layers. The initial precision
is 1e6. Interestingly, similar to Swaroop et al. [2019] we find that it is crucial for
optimal performance to also initialise mean and precision in this way between tasks.
We run this experiment with 20 different random seeds of the permutations of the
pixel values and model training. We achieve an average accuracy (ACC) of 94.0%
with a standard deviation of 0.8%. As we can see in Table 1, VOGN outperforms
EWC, SI, UCB, HAT, and achieves similar performance to the improved version of
VCL, with slightly slower decrease in average accuracy (see Figure 3).

1Available at http://yann.lecun.com/exdb/mnist/.
2CIFAR10 and CIFAR100 available at https://www.cs.toronto.edu/~kriz/cifar.html.
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Figure 4: Schematic multi-head neural network for K tasks, with input x, outputs of
the last shared layer a, output y, shared parameters θS , and head parameters θHk for
task k. Only one head can be used per forward pass; in the figure, the head for task
1 is used, which is indicated by the filling. Figure loosely adopted from Nguyen et al.
[2018].

We also run the modified version of SLANG, presented in section 3.5.1, with low-
rank L = 64 and the same hyperparameters as VOGN but with β = 0.0001. We
use this value for β because of the results for split CIFAR10/100 in section 4.5. For
SLANG, it does not seem to make much of a difference; this might be related to the use
of a MLP instead of a CNN or the low-rank plus diagonal approximation. Contrary to
its theoretical advantage of employing a more sophisticated covariance approximation,
we do not see any performance advantage over VOGN. We only run SLANG with 5
different random seeds for the permutations and model training because of the long
run times due to increased computational complexity, and achieve 93.8%±1.4 average
accuracy. There is no obvious reason for the lack of improvement of performance.
It might be related to accumulating numerical issues or some not well-understood
properties of the approximation. Since this first result does not seem promising and
the computational cost is high, we do not run SLANG on the other two benchmarks.

4.4 Split MNIST

This is another standard benchmark problem for continual learning. It consists of
five binary classification tasks which are subsets of MNIST. The classes are split in a
consequent manner: 0/1, 2/3, 4/5, 6/7, and 8/9.

Unfortunately, for this problem it is necessary to use a multi-head neural network,
i.e. a neural network with multiple output layers, each associated with one task.
During training and validation of task k, only the output head with parameters θHk
is used; the shared parameters θS are used for training and validation on all tasks
(c.f. Figure 4). During training on task k, the prior for θHk is simply the prior used
for training on the first task N (θ|µ0,Σ0). A multi-head neural network assumes
that the associated task of a training or validation sample is known for training and
prediction. It might not possible to apply this in practice and it is in conflict with the
desiderata in Farquhar and Gal [2018]. There might be ways to make a single-head
neural network work through, for instance, a wider single-head network as in Golkar
et al. [2019].

We follow Swaroop et al. [2019] and use a multi-head fully-connected feed-forward
neural network with one hidden layer containing 200 units with ReLU activation
functions. We also use a mini batch size of 256 but only train for 100 instead of
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Figure 5: Mean accuracy after training on all 6 tasks of split CIFAR10/100, averaged
over 5 runs with standard error. VOGN outperforms VCL + Coreset and EWC, and
slightly outperforms SI. VOGN is always comparable or better than training from
scratch. VOGN is close to Joint on the first task.

600 epochs per task. We can choose less epochs per task since we expect better
convergence properties of VOGN compared to Bayes-by-Backprop due to e.g. the
use of natural gradients and also see this confirmed in practice. This is a practical
advantage of VOGN over VCL. The hyperparameters of VOGN are set in the same
way as for permuted MNIST.

As shown in Table 1, VOGN (98.8%± 0.1%) matches SI, slightly outperforms the
average accuracy of the improved result with VCL reported in Swaroop et al. [2019],
and outperforms EWC by a large margin.

4.5 Split CIFAR10/100

Split CIFAR10/100 commonly consists of six tasks: The first task is CIFAR10 and the
next five tasks are the first 50 classes of CIFAR100 split into five consecutive 10-class
classification problems. This problem is significantly harder than permuted and split
MNIST. Images are bigger and in colour, 32 × 32 × 3 instead of 28 × 28 pixels, and
the objects shown in the images are harder to classify than the handwritten digits in
MNIST. Therefore, for this benchmark a convolutional neural network (CNN) has to
be used to achieve good performance.

We choose to follow Zenke et al. [2017] and use a neural network with four con-
volutional and two fully-connected layers. The only difference is that we do not to
use dropout because there is no obvious theoretical interpretation of using VOGN
combined with dropout which makes sense and we do not see any benefits in practice.
As for split MNIST, we also need to use a multi-head neural network to be able to
predict new class labels.

To achieve reasonable results on this benchmark, more hyperparameter tuning
than on the simpler problems is necessary. First of all, it is important to realise that
the first task (CIFAR10) has ten times as much data as each of the tasks two to six.
We use a constant batch size of 256, so to match iterations on all tasks, we choose
to train for 60 epochs on the first task and for 600 for the other tasks. Also, we
use an initial precision of 4e3 for the first, and 4e4 for each of the other tasks. In
contrast to the other experiments, we do not reset the weights between tasks. We
choose the learning rate α = 0.001, a a prior with zero mean and prior precision
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Method ACC BWT FWT
EWC 71.6%± 0.9 −2.3± 1.4 0.17± 0.9
SI 73.5%± 0.5 * *
VCL + Coreset 67.4%± 1.4 −9.2± 1.8 1.8± 3.1
VOGN 74.4%± 0.4 −0.7± 0.5 1.8± 0.3
From Scratch 73.6%± 0.4 - -
Joint 78.1%± 0.3 - -

Table 2: The average validation accuracy (ACC), backward (BWT), and forward
(FWT) transfer over all tasks of split CIFAR10/100. We report mean and standard
deviation over 5 runs. ∗ means that the metric could not be computed because of
lacking access to results. − stands for not applicable. The best results of the continual
learning methods (within standard deviation) are in bold.

σ−2
0 = 120. For this benchmark we also use momentum, as suggested in section 3.4,

with a momentum rate β2 = 0.9. As before, we use 10 MC samples during training,
and 100 for validation.

Interestingly, a crucial hyperparameter is the decay rate β of the exponential
moving average over the precision. We choose β = 0.0001 which is smaller than for
the other experiments. With β = 0.001 performance is much worse, almost 10% worse
final average accuracy. Choosing a smaller β corresponds to a slower change of the
precision, since the current estimate is multiplied by (1− β) and therefore dominate
the convex combination. This suggests in the context of this benchmark, that the
information contained in the precision vector is crucial for performance. It will be
interesting to see if this also applies to other benchmarks where CNNs are used.

Notably, here we compare against VCL with a randomly chosen coreset of 200
samples because VCL without coreset is not able to achieve reasonable performance
at all. It might be possible to improve performance by further hyperparameter tuning
but even in general, BBB seems to be hard to use with CNNs. As before, we also
compare against EWC and SI (SI results taken from Zenke et al. [2017], VCL and
EWC baselines kindly provided by Siddharth Swaroop). To get some more perspective
on the validation accuracies achieved on each task after training on all tasks, we also
consider two more baselines: Training on each task from scratch and training on
the data of all tasks jointly, both with the same architecture as the continual learning
methods and Adam for optimisation. The final average accuracy of the jointly trained
model can be seen as an upper bound for continually learned models. It is not a proper
bound for VOGN because we use Adam for the joint training and not VOGN; also,
hyperparameter tuning on each task could lead to different results. Still, these two
additional baselines provide some more perspective on the properties of the continual
learning methods.

As shown in Figure 5, VOGN outperforms VCL + coreset, EWC, and slightly
outperforms SI (with overlapping standard deviation, see Table 2 for the exact num-
bers). As one would hope for, VOGN achieves always almost equal or better accuracy
as training from scratch on all tasks. SI almost matches or outperforms training from
scratch on tasks 2-6, but is significantly worse on task one. While VCL shows similar
forward transfer as VOGN, it does not reach accuracies comparable to training from
scratch before task 5, since too much catastrophic forgetting is happening.

Interestingly, VOGN almost matches the accuracy of our approximate upper
bound, a jointly trained model, on the first task (CIFAR10); SI, the only method
that overall performs almost as well as VOGN, shows significant forgetting of the
first task. Conversely, SI outperforms VOGN on the last task. This might be partly
explainable by the fact that VOGN is a Bayesian method and the first task has ten
times as many training samples as tasks 2-6. In VOGN, we explicitly use the dataset
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size N to scale the (square of the individual) stochastic gradients, which practically
assigns a proportionally higher importance to the posterior of tasks with more data.

Also, VOGN achieves with -0.7 the best score for backward transfer, which implies
that there is very little forgetting or significant transfer to old tasks happening. The
problem of catastrophic forgetting is apparent in the BWT score of VCL + Coreset,
which is with -9.2 the worst among the tested methods. In contrast, VCL + Coreset
achieves the same forward transfer score as VOGN. EWC has BWT and FWT scores
in between the two other methods (see Table 2).

Since we do not have access to the exact results for SI, we cannot compute BWT
and FWT. Considering the results in Figure 5, we would expect to see a worse BWT,
but a better FWT score than VOGN.
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5 Conclusion

This work explains an optimisation method for deep neural networks called VOGN,
which is using natural gradient variational inference, and provides strong experimen-
tal evidence that it can enable continual learning with comparable performance to
other state-of-the-art methods. VOGN offers a principled way of doing approximate
Bayesian inference which can be scaled to deep neural networks and big datasets.
Due to its principled nature, benefits of Bayesian inference are to some extent pre-
served, which makes it possible to recursively update the posterior when continually
learning different tasks. Moreover, through the use of natural gradients, better con-
vergence properties than, for example, Bayes-by-Backprop are expected and also seen
in practice, e.g. we only train for 100 epochs per task on permuted and split MNIST
while the results with improved VCL are obtained by training 800 and 600 epochs per
task respectively. In section 4, we present experimental evidence on some standard
continual learning benchmarks for the ability of VOGN to enable continual learning.
As discussed before, the results consistently match or outperform other comparable
continual learning methods.

Notably, VOGN offers a few natural ways of further improvements: First, as shown
with VCL in Nguyen et al. [2018], coresets can easily be integrated into the variational
inference framework, which can be used to trade-off some memory and compute for
improved performance. Second, VOGN uses a mean field covariance approximation
which could be replaced by a structured approximation like SLANG or K-FAC. In
practice, SLANG does not show any improvements on permuted MNIST; this might
be due to numerical issues or some unknown properties of the algorithm. Using K-
FAC is a promising direction, as shown by Ritter et al. [2018], although it is not
trivially clear how to use a Kronecker-factored prior precision; some approximation is
most likely necessary. Third, the variational family could be extended to something
more complex than a simple Gaussian distribution, e.g. a mixture of Gaussians [Lin
et al., 2019].

All of these potential improvements represent some trade-off of memory and/or
computational cost to improved performance. While this is definitely an interesting
direction of further research, if it is appropriate to use these extensions largely depends
on the specific application.

Another interesting direction of research in Bayesian deep learning which is loosely
related, is to explore the use of more sophisticated priors than the commonly used
Gaussian with scalar prior mean and precision. A more appropriate prior for the first
task in a continual learning setting might lead to improved performance.

A different direction of potential future work is the application of VOGN to larger
and harder continual learning benchmarks. One of the advantages over other methods
is that VOGN naturally scales to bigger problems and that there is no additional effort
necessary to use VOGN for continually learning. This makes it straight forward to
apply it to some continual learning benchmark using bigger datasets like ImageNet.
Here, it is interesting to see how much hyperparameter tuning VOGN requires to
perform well and if reliable heuristics can be identified. VOGN is available as a
plug-and-play PyTorch optimiser, which hopefully facilitates further research in this
direction.

Also, all the continual learning benchmarks used in this work make specific and
restrictive assumptions. More general scenarios would impose the need to deal with
unknown and potentially overlapping task boundaries [Aljundi et al., 2018, Zeno et al.,
2018, Jerfel et al., 2018, Aljundi et al., 2019], and might restrict the number of passes
through the training data [Lopez-Paz et al., 2017]. Moreover, split dataset tasks with
a single-head neural network are an interesting scenario since the task affiliation of
the samples during testing has to be known when using a multi-head network; this
might be an unrealistic assumption for some practical applications. To come closer to
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fulfilling these kind of desiderata for continual learning, e.g. as proposed in Farquhar
and Gal [2018] or Lange et al. [2019], more sophisticated benchmarks are necessary.

The development of better and more insightful metrics for continual learning is
also crucial to progress in this field; forward and backward transfer as defined in this
work are still limited, e.g. it is hard, and maybe impossible, to differentiate between
avoiding forgetting and backward transfer. More insight into why algorithms do
well and when they fail will help to develop new and better methods. Therefore,
the development of new benchmarks and metrics is crucial to progress in continual
learning.

All in all, we hope that this work can serve as a starting point for exploring
continual learning with natural gradient variational inference in general, and VOGN
specifically. Also, it strengthens the point that deep learning and Bayesian infer-
ence are not mutually exclusive frameworks; indeed, Bayesian deep learning might
offer some potential solutions for common issues with classical deep learning besides
catastrophic forgetting, such as fragility with regards to adversarial attacks and over-
confident out-of-distribution predictions.
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